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Abstract

Workload characterizationis usedfor modelingand evaluating computingsystemsat
different levels of detail. We present workload characterization for a class of
Computational Fluid Dynamics (CFD) applications that solve Partial Differential
Equations(PDESs). This workload characterizationfocuseson three high performance
computingplatforms: SGI Origin2000, IBM SP-2,and a cluster of Intel Pentium Pro
basedPCs.We executeextensivemeasuement-basedxperimentson theseplatformsto
gather statistics of systemresouce usage, which lead to a quantitative workload
characterization.Our workloadcharacterizationapproac yieldsa coarse-grin resouce
utilization behaviorthat is being applied for performancemodelingand evaluation of
distributed high performancemetacomputingystemsin addition, this study enhances
our undesstandingof interactionsbetweerPDE solverworkloadsand high performance
computing platforms and is useful for tuning applications belonging to this class.
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1 Intr oduction

Many high performanceomputing(HPC) systemsarebeingdevelopedwith commoditymicroprocessors
and network fabrics for improved price/performanceratios. This trend suggeststhat mary HPC
architecturesare corverging with only differencesin hov memory is accessed14]. While hardware
technologiesadvanceat a rapid pace, software technologiesfor such systemsare lagging behind and
becomingmajor performancebottleneckq17]. In orderto designsoftware environmentsfor future HPC

systems, it is essential to understand the interactions between systeanesaftd/ hardare resources.

Workloadcharacterizatiowanbe consideredsan effort to generalizeéhe resultsof variousmeasurement-
basedstudiesof a classof applicationson a specificsystem.Systemarchitects software developers,and
performanceanalystscanuseworkload characterizatiomo gleaninsightaboutnew architecturafeatures,
system managementprotocols, and their impact on performance,respectiely. Our objectve is to
characterizethe workload for ComputationalFluid Dynamics (CFD) applicationsthat solve partial
differentialequationsWorkload characterizatiorran be particularly beneficialfor modelinganddetailed
evaluation of alternatve schedulingand resource managementsystem designs for metacomputing
ervironments [4,11]. Workload characterizationis also used by computer architectsto study the
performanceof a proposedsystemdesignunderrealistic operatingconditions.Workloadsusedfor such
studiesare often basedon executingactualprogramg21] or tracesof actualprogramg9]. However, this
type of fine-grainedworkload studiesconductedin a bottom-up manner(i.e., starting from low-level
information)are not only an overkill but alsoimpracticalfor systemusers programmersandanalyststo
plan anddesignsoftware componentshat useor managea computingsystem.Traditionalmeasurement-
basedvorkloadstudiesdependon collectinglarge volumesof accountingog data,which aresimpliedand
analyzedusing clustering techniques[7,15]. Therefore,the researchersare considering hierarchical
workload characterizatioomethodologiego suit the requiredlevel of detail for a particularapplication

[12].

Our workload characterizatioraddressethe issueof level of detail by relying on a priori knowledge of

system architecture andovkload behwior. In particular:



1. we characterizea workload in termsof its requirementdor available systemresourceghat may be
shared among multiplearkloads and managed according to well-defined policies and protocols; and

2. we keepthe characterizatioprocesgocusedthroughatop-davn approachwhichis basedon domain-
specific knavledge about a wrkload (i.e., a class of applications).

Thesesystemresourcesypically include CPU, memoryhierarcly, interconnectingnetwork (bus, ethernet,
customnetwork, etc.),and /O devices. Theseresourcesnay be sharedamongmultiple workloadsand
managedaccordingto well-definedpolicies and protocols.A workload usesthe systemresourcesby
occupying andreleasinghemaccordingts characterizatiomndresourcananagementoliciesimposedoy
the system.Corventional bottom-up workload studiesrely on detailed accountinginformation about
systemresourceusageover an extendedperiod of time. Such studiesare accomplishedn the cost of
instrumentingthe systemsoftware and applications,collecting and maintaininglarge volumesof data,
performanceoverheado the applicationsandenormousamountof time andeffort to analyzethesedata.
Usingatop-davn characterizatiompproachywe needto measurenly a subsebf theentireresourcaisage

accounting information to capture thedéof detail that is necessary for a specific performance.study

We focuson threeHPC platforms: SGI Origin2000with MIPS R10000nodes;IBM SP-2with RS/6000
nodesanda clusterof PCswith Intel PentiumPronodesWe usethe NAS parallelbenchmarKNPB) suite
as representatie CFD solvers for this characterizatioreffort [2]. Although thesebenchmarksare not
completeCFD applicationsthey represengenericimplementation®f partial differential(Navier-Stokes)
equation(PDE) solversthat canbe found in mostreal CFD applications Sincethesesolversaccountfor
the major computationaportion of workload, it is appropriateo usethemto characterizeéhe interactions

between these savs and tw main system resources thatytistress: CPU and memory subsystem.

Section2 of this paperpresentsan overvien of CFD applicationsbasedon PDE solution and their
distinguishinggualitative characteristicaMe presentinoutline of ourworkloadcharacterizatioschemeén
Section3. Section4 detailsmeasurement-basedbrkload characterizatioron threeplatformsof interest.
Finally, Section5 presentstwo scenarioswhere we are applying this workload characterizationWe

conclude in Section 6 with a discussion of conititns and future directions of this research.



2 Background

A CFD applicationis a specialcaseof a scientific application,distinguisheddue to its large memory
requirementslt is a well-known fact that CFD applicationsstressthe systemmemoryin generaland
cachesin particular Figure 1 presentsan overviev of numerical solution for typical CFD problems.
Numericalsolutionof partialdifferentialequationghatrepresenthe dynamicsof a physicalsystenresults

in the computational erkload that we intend to characterize in this paper
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Figure 1. Owerview of numerical solution of a typical CFD poblem on a computer

NumericalPDE solversfor CFD applicationsexhibit somedistinguishingcharacteristicshatarecommon

among them. Some of these computational characteristics are noted in thimdpllo

1. Temporal Recurrence Usually a small kernel (i.e., solution algorithm) dominatesthe computation.
Execution of this code is repeatedeo temporal or spatial locations of the problem domain.

2. Memory Bound: Mostnumericalsolutiontechniguesisedin CFD applicationsemplgy sparsematrices
to represensystemparametergbtainedfrom the differentialequationsTherefore datastructureausu-
ally storenon-zercelementof the original matricesto reducememoryusageThisimpliesthatthe data
structures are fullltt each element is accessedesal times during main solution process.

3. Compute Intensive: Typically, CFD solversrequiremore CPU cyclesthancommunicatiorbandwidth.
Compute intensie work is dominated by memory loads/stores and floating point operations.

4. Structur ed Matrices: Many CFD applicationsarebasedn algorithmsthatoperateon structurednatri-
ces. This results in repeti and uniform memory accesses.

For cache-basetHPC systemsthe memoryboundperformances the mostimportantcharacteristicln
orderto understandhe effects of temporalrecurrenceandregular accesgatternson cacheperformance,
we executeda testcodefragment(seeFigure 2). We areinterestedn determiningthe numberof cache

misses ver each time step as well as cache misses corresponding to accesses to each elemeht of array



We executedthe example codeof Figure 2 on one processoion an Origin2000.EachOrigin2000node
consistf two processorsgachwith two levelsof cachesa 64K primarycache(32K for dataand32K for
instructions)anda 4MB secondarycache In this example,we deliberatelychosea matrix sizethatcould
notfit in the primary datacache Additionally, the numberof time stepswaskeptlarge, sothatthe “cold”
cachemissedn thebeginningdo not significantlyskew the overall results We usedioctl basednterfaceto
accessR10000performancecountersand configuredthem to measureprimary datacachemisses[27].
Figure3 shavs thedistribution of primary datacachemissesover time stepsaswell asindices(calculated
asl*128+J). This experimentsuggestdhat recurrentandregular accesseto large arraysare expectedto
resultin uniformly distributedcachemissesvertime andaddresspace Therefore performancef typical

CFD applicationshasedon PDE solwvers that run on cache-basedystemss likely to be limited by the

REAL A(1024, 1024)
| NTEGER TEMP, TIME, |, J
REAL TEMP

DO TIME = 1: 100
DOl = 1:128
DOJ = 1:128
TEMP = A, J)
ENDDO

ENDDO

ENDDO

Figure 2. Example code.
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Figure 3. Histograms of primary data cache misses.
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For a measurement-basatharacterizatiorof a classof CFD applicationsthat solve PDEs, we selected
following NAS parallelbenchmarksBT, SR LU, FT, CG, andMG. Thesebenchmarksepresentlifferent
typesof PDE solversthatarecommonlyusedin real CFD applicationsThesebenchmarksreexecutedon
Origin2000,SP-2,anda clusterof PCs,which belongto threeclasseof HPC architecturesDSM system,
distributedmemoryparallelsystemsanddistributedsystemsrespectiely. Sinceexplicit message-passing
is the only common remote memory accessapproachamong these systems,we use MPI-based

implementation of NPBs for thisakload study

3 A Schema br Workload Characterization

In termsof resourcausage CFD workloadsof interestto this studyaretypically compute-intensie PDE
solvers.An applicationrunningon multiple processorsieedsnter-procescommunicationgitherthrough
explicit message-passingr sharedmemory Since this workload study focuseson explicit message-
passingbasedapplicationsoverall workload can be consideredas alternatingbetweencomputationand
communicatiorstates asshavn in Figure4. This representshe highestlevel of workload behaior that
can be usedto describedifferent types of scientific applicationsin a genericmanner There are three
temporalcomponentsof this characterizatiorthat will be of interestfor measurement-basexdudiesin
Section4: (1) inter-arrival time betweensuccessie communicationphasesf2) length of a computation
phase;and(3) lengthof a communicatiorphase Sincethesequantitiesare non-deterministicye will be

interested in finding an appropriate probability disttidn to specify them.
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Figure 4. Altemating computation and communication phases in a typical CFD satv workload.

In orderto extendthe high-level workloadcharacterizatioschemeof Figure4, we considerfurtherdetails
of the computationphasesin caseof a PDE solver for a CFD application,computationis dominatedby
floating point operationsas well as memory accessegprimarily, memoryloads).Figure 5 representsa

more detailedmodel of a typical workload statesrunning undera Unix-like operatingsystemand four



systemresourcesCPU, memoryhierarcly, 1/0, andnetwork. The dashedines help correlatethis model
with the overall characterizatiof Figure4. CPUandmemoryaccesstatescorrespondo a computation
phase Assumingno synchronizatioroverhead,a communicationphaserequirestwo resourcesCPU to

make the systemcall for invoking a communicatiorserviceandnetwork resourcegor actualdatatransfer
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Figure 5. Pssible states of a typical erkload running under a Unix-lik e operating system.

CFD applicationsof interestto this study are basedon PDE solwers, which typically do not involve
intensie I/O operationsTherefore we caneliminatethe I/O statefrom our modelandfurther expandon
the memoryaccessstateto appropriatelycapturethe resourceusagebehaior on a cache-basedystem.
Thesechangesare reflectedin Figure 6. For sharedmemory multiprocessorsthe network accesses
correspondo theaccesse® remotememorylocations.Sincewe arefocusingon explicit message-passing
even of shared-memorgystemsremotememoryaccessearenot consideredisa partof load/storestate.
For programsthat benefit from global addressspaceon shared-memorysystems,we could further

eliminate a separate naivk access state and add it as another state under memory access.

Workload model can be parameterizedfor a specific system based on actual measurements.
Parameterizatiotinvolves: (1) determininga suitableprobability densityfunctions(pdfg to representhe
lengthsof computatiorandcommunicatiorstatesf2) fitting a suitablepdfto represeninter-arrival time of
successie communicatiorstatesy3) rangesof transitionprobabilitiesto eachstatewithin memoryaccess
state(e.qg., primary cachemiss rate); and (4) fraction of load/storeinstructionsamongall instructions

executed.
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Figure 6. Detailed workload characterization scheme.

Using this schemeof workload characterizatiomnd parameterization particularHPC systemswe can
modelandevaluatethe performancef a parallelor distributedcomputingsystemunderdifferentoperating
conditions.Eachnodesof the systemmay executeone or more processeshat sharethe local resources:
CPU, memory hierarcly, and network, accordingto the managemenpolicies enforcedby operating
system.Executionof an applicationprocesscan be modeledby alternaterequestfor CPU and network
time asillustratedby the processhehaior givenin Figure 7. The numberof memoryaccesseand cost
incurreddueto cachemissess consideredasa part of the computationphasetime. Clearly, this level of
detaildoesnot capturemary architecturatletailsandmaynot be suitablefor designinga new architectural
feature in a microprocessorHowever, this level of detail is sufficient for analyzing system level
performancesvaluationof a concurrentsystem.This level of detailis a compromisebetweeraccurayg of
performanceavaluationand amountof effort neededo usea detailedworkload that capturesnstruction

level behaior of a process and system resources.

In section 5, we follow the workload characterizationschemapresentedin this sectionto design
measurement-baserdperimentson threeplatformsof interest Measurementgield quantitatve rangesof

workload parameters that are useful for modeling-bassdation.



Set current_state = COVPUTATI ON

Set next_comuni cation_tinme = interArrival Ti meDi st. draw)

Set current_conputation_|l ength = next_conmmuni cation_time - current_tine
Det erm ne the nunber of nmenory accesses using the total nunber of floating
poi nt operations for this program and deternining the proportional nunber
of floating point operations during current conputation phase, assuning
that all floating point operations are uniformly distributed during
execution

5. Occupy the CPU for current_conputation_length tine and calculate the
nunber of accesses to caches and nmenory according to their access and niss
rates during current_conputation_ | ength

Set current_comuni cation_|l ength = comuni cati onLengt hDi st. draw()

Set current_state = COVMUNI CATI ON

Cccupy the CPU for current_comuni cation_length tinme

Asynchronously occupy the network resources for a fixed tine

0 Repeat from1 as long as current _tine < sinulation_end_tine

Pk
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Figure 7. A model ér a PDE soher process behaor based on vorkload characterization.

4  Measurement-Based Experiments

Measurement-basaglorkload characterizatioftoy gatheringa similar setof performancestatisticsacross
heterogeneouslatforms requires formidable effort due to differencesin architecture, operating
ervironments, and available monitoring tools. Three systemsof interestto this study are basedon

following processorsneachnode:MIPS R10000,BM RS/6000andIntel PentiumPro.Theseprocessors

share tvo common architectural features that are important to note:

1. they support special on-chip counters to collect statistics related to processor operations; and

2. memory performance relies on the utilization of one ar lwels of cache.

Thesefeaturescanbeidentifiedon mary otherstate-of-the-arprocessorsOur workloadstudyrecognizes
thesecommonfeaturesby utilizing themfor collectingperformancaneasurementd) particularaboutthe

memory performance.

In orderto provide a comparatie measureof performanceof threeplatforms,we considerthe execution
timesof anMPI-basedmplementatiorof NPBson thesesystemsTablel lists the executiontimesof each
class A NPB on three platforms. These execution times reflect the wall-clock times excluding the
initialization andfinal printing of resultphasesiscodedin NAS implementatiorof thesebenchmark$2].

Clearly, Origin2000and SP-2exhibit superiorperformancecomparedo the clusterof PCsdueto their

10



finally tuned and carefully designed parallel architectures.

Table 1. Comparison of class A NPBs’ execution times on #e platbrms using bur nodes.
Benchmark execution time (sec)
Processoon Processor
Platform each node | speedMHz) BT SP LU FT CG MG
Origin2000 R10000 195 MHz 820.34 | 392.92 | 364.90 | 45.87 13.21 16.90
SP-2 POWER2 66 MHz 593.61 | 472.72 | 478.73 | 66.73 10.77 16.30
Cluster of PCs | Pentium Po 200 MHz 1,769 1,415 1,090 480.77 | 46.61 55.16

In the following subsectionsye briefly overview the architecturesn additionto presentingworkload
studiescarriedout on theseplatforms.Resultsof a workload study on eachplatformis presentedrom
three perspecties: overall statisticsrelatedto NPB executions; memory subsystemperformance;and

characterization of temporal resource usage\ieha

4.1 Origin2000
SGI Origin2000is a Distributed SharedMemory (DSM) systemwith a cachecoherentNon Uniform

Memory Access(ccNUMA) architecture[20]. Eachnode of the systemconsistsof two MIPS R10000
processorsvith two levels of separatedataandinstructioncachedor eachprocessorand 4GB of main
memorysharedbetweentwo processor®n a node.Multiple systemnodesare connectedn a hypercube
topology through a high speednetwork. This systemrepresentsan importantclassof shared-memory
platforms that are becoming popular in high performancecomputing becausethey offer ease of

programming due to a global address space and scalabilitgéoriamber of nodes.

Native SGI tools, such as Perfex and SpeedShopbenefit from the on-chip performancecountersof
R10000processorfor low-overheadandreliablemeasurementsf processopperationg27]. We usethese
tools in addition to a customtracing library to collect runtime information necessaryfor workload
characterizationStatisticsprovided in the following subsectionsare collectedduring the execution of
entireprogram,includinginitialization andfinal printing of resultsphasesTheseexperimentddiffer from
thosewhoseresultsare reportedin Table 1, which were basedon the executiontime of the benchmark

portion of the code.
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4.1.1 Overall Statistics

Table2 providesthe overall statisticsof computationrandcommunicatiorphaseobtainedthroughtracing
of classA NPBs.We insertednstrumentatiorat the boundarie®f communicatiorphase®f eachprogram
to obtainthetemporalcharacteristicérom eachof thefour nodeswvherebenchmarlprocessesxecute On-
chip cycle counterof R10000processorsvereusedto determinethe timestampsResultsarebasedon the
tracesobtainedfrom oneof the four nodesthey aresimilar to the tracesobtainedfrom othernodes Mean
interarrival time betweencommunicationphasesis small except in the caseof FT benchmarkthat
performssmall numberof global communicationoperations.Communicationoperationsare scattered
throughoutthe executionfor other benchmarksOrigin2000 usesSGl’s implantationof MPI message-

passing library that benefits from the shared-memaory architecture of this platform.

Table 2. Statistics of communication and computation phases of NPBs (class A) on Origin2000
obtained through custom instrumentation.

Inter -arri val time of Length of Length of computation
Benchmarks | communication phases | communication phases phases
Mean Min Max Mean Min Max Mean Min Max
(sec) | (msec)| (sec) (sec) | (msec)| (sec) (sec) | (msec)| (sec)
BT 0.21 0.024 1.53 0.02 0.014 0.49 0.19 0.009 1.53
SP 0.05 0.029 0.80 0.004 0.014 0.12 0.04 0.014 0.79
LU 0.006 0.028 0.61 0.0004 | 0.018 0.17 0.005 0.008 0.59
FT 3.19 1.50 5.55 0.49 0.10 1.14 2.69 0.90 5.55
CG 0.009 0.37 0.70 0.001 0.02 0.04 0.008 0.12 0.70
MG 0.01 0.01 1.62 0.001 0.003 0.09 0.01 0.01 1.62

4.1.2 Memory Rerformance

Memory performanceplays a key role in obtaining high performanceor an applicationexecutedon a
DSM systenlike Origin2000.Therearefour levelsof memoryhierarcly: primarycache secondarygache,
local memorysharedbetweerntwo R10000processorsn anode,andmemorylocatedon anon-localnode.
A datahit in primarycachetakesonly oneclock cycle; ahit in secondargachetakes10 cycles;ahit in the
local memoryconsumed 00 cycles;anda hit in a non-localmemorywasteswell above 150 CPU cycles
[20]. Thusthe performanceof a memoryboundworkloadsuchasa PDE solver for a CFD applicationwill

suffer when program code does not fully utilize the caches.

12



Table3 lists the ratiosof memoryacces®perationdo all of the floating point operationsThesestatistics
areobtainedby executingeachbenchmarkhroughPerfex onall four nodes Perfex multiplexesthetwo on-
chip countersof R10000to measurement3l differentCPUandmemoryrelatedmetricsusinga sampling-
basedapproach.To accountfor software multiplexing of hardware countersand sampling,the resulting
statisticsare approximatedthrough the counts. These approximationsdo not significantly affect the
accuray of measurementfor suficiently long-runningprogramsBasedon thesemeasurementsye can
obsene that almost every floating point instructionin thesebenchmarksequire at leastone memory
access.This obseration is consistentwith commonbelief that CFD solwvers are often memory bound
applications[2]. Thesemeasurementalso indicate that more than 80% of executiontime is spentin
accessingmemorywhere executiontime is monitoredfor the entire program.Thesememory accesses
includefloating point aswell asintegerinstructions.Thesepercentageare calculatedby Perfex basedon
the total costsof cacheand memory accessesnd execution time. This information is important for
performancduning scenariosvherewe have to isolatethe bottleneckresourceln caseof a CFD solver
application,the bottleneckresourceis almostalways memory Numberof floating point operationsper
secondon eachnoderepresents measuref computation-intensityf the workloadon a given system A
larger value indicatesthat the applicationis computationintensive and likely to be memory-and CPU-

bound.

Table 3. Memory perbrmance statistics of NPBs on Origin2000 obtained by usingeHex tool.

Ratio of memory access
Execution | MFLOPS %age of memory access operations to floating
Benchmarks | time (sec) | per node time to execution time point operations
BT 794.22 33.87 0.83 1.33
SP 385.86 35.07 0.96 1.38
LU 353.63 59.96 0.91 0.93
FT 51.98 30.61 1.00 1.58
CG 13.81 15.91 1.00 3.58
MG 25.05 46.01 1.00 1.31

Table 4 presentghe cacheand TLB miss statisticswith the costof thesemissesfor eachof the NPBs

executedon Origin2000.Themissratesareexpresse@saratio of cacheor TLB missedo thetotalnumber
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of memoryreferencesTotal numberof memoryreferencesrevery closeto the numberof floating point
instructionsfor this workload,assuggestedby the statisticsof Table3. Costsof cacheor TLB missesare
determinedas percentagesf time to replacecacheline or TLB entriesto the entire executiontime of a
program.For mostof thesecasescachemissesaccountfor about60% of the executiontime. TLB misses
are small dueto the distribution of dataamongprocessorsn a message-passingaradigm,which hasa
side-efect of reducingthe effective size of datafor eachprocessarNon-local memory accessesre
throughexplicit messaggassingandits costis consideredasa partof communicatiorcostaccordingto

workload characterization scheme presented in Section 3.

Table 4. Cache and TLB misse®f NPBs on Origin2000 with 195 MHz R10000 mrcessors
obtained through Rerfex.

L1 data cache L2 data cache TLB
Miss rate Miss rate Miss rate
Benchmarks (%) Cost (%) (%) Cost (%) (%) Cost (%)
BT 119 21.81 21.50 39.28 0.10 9.09
SP 14.72 32.66 13.56 37.11 0.17 2.08
LU 14.03 36.10 6.39 19.34 0.35 7.35
FT 2411 56.60 4.13 19.60 0.03 0.35
CG 26.63 69.03 5.78 33.45 0.13 0.75
MG 13.37 38.23 11.22 35.94 0.02 0.37

4.1.3 Characterization of Emporal Process Behaor

Averageresourceusagestatisticscanonly presenta summaryof processhbehaior and are not usefulfor
modelingandevaluationscenarioghatevolve over time. Probabilitydistributionscanadequatelyepresent
the temporalbehaior of a processunderstudy A detailedsimulation-basedtudy can use appropriate
probability distribution function (pdf) to modelthe requirement®f computatiorresourcesver time from
an application process.In this subsectionwe determine appropriate pdfs to representalternating
computationand communicationphasesfor our referencePDE solver workload. For this purpose,we
insertinstrumentationn NPBsat the boundarie®f eachcomputatiorandcommunicatiorphase Analysis
of eachtracefile yields a numberof samplesof three metrics: (1) inter-arrival time of communication

phases, (2) length of communication phase, and (3) length of computation phase metrics.
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Figure8 presentdistogramf samplesf threemetricsof interestcollectedduring the executionof BT
andSPbenchmarksThesehistogramsareplottedsuchthatthe areaundereachhistogramis equalto one.
We canthencomparethe relative frequencief measuredraluesof the metricsto four theoreticalpdfs:
weibul, normal,lognormal,andexponential. We usedstatisticstoolbox of Matlabto determinethe values
of thesepdfsfor eachvalueof thethreemetrics.For eachof the histogramjt canbe obseredthatmostof
the occurrencesireclusteredaroundsmallermetric values.This indicatesthat an exponentialdistribution
is appropriateto representhesemetrics. A closer examination of histogramsof Figure 8(a) and (b)
indicatesacomparatiely largerpeakfor thesmallestin, whichis closelytrackedby thetheoreticalvalues
of lognormalpdf. However, an exponentialdistribution is an appropriatechoiceto representinter-arrival
timesbecausat fits a rangeof smallinter-arrival timesin additionto approximatelyaccountingfor the
initial peak. Additionally, computationand communicationphasesrepresenta fairly coarse-grained
classificationof the behaior of anapplicationprocessThereforeuseof exponentialdistribution ensures
thatthe lengthsof successie communicatioror computationphasesrerelatively independentueto the
“forgetfulness’propertyof anexponentiallydistributedstochastiqrocess[24]Otherresearclefforts have
also used exponential distribution when workload is classified as alternating computation and

communication processes [19].

Figure 9 representshe plots of normalizedhistogramsand theoreticalpdfs for four kernelbenchmarks:
LU, FT, CG,andMG. Exceptfor FT, all otherbenchmarksxhibit arelatively largenumberof occurrences
of small metric values,which is a behaior appropriatelyrepresentedyy an exponentialdistribution. In
caseof FT, thereis atotal of 17 communicatiorphasegluringthe entirebenchmarlexecution.Therefore,
thetimesfor communicatiorandcomputatiorarespreadout to a wider rangeof values.In casesvherea
large numberof samplesare not available to fit a theoreticalpdf, a normal distribution is considereca
“robust” choice.However, we treatthe temporalbehaior of FT asa specialcasebecausea real CFD
application typically runs for a long time and will have mary more alternating computationand
communicatiorphasesyhich arelik ely to follow the exponentialdistribution asexhibited by all the other

benchmarks in NS suite.
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Figure 8. Histograms and pdfsdr (a) BT and (b) SP benchmarks executed omdr processors of an
Origin2000.

From the measurement-basedritoad study on Origin2000, we conclude that:

1. PDEsolversexhibit alternatingcomputatiorandcommunicatiorphase®ver time, which canberepre-
sented by gponential distriltion;

2. number of floating point operations per second per node range from 13 MFLOPS to 60 MFLOPS;
3. close to 80% of computation time is accounted for memory accesses;

4. primary level cachemissratefalls in the rangeof 11%to 27% with a costof 10 CPU cyclesfor each
miss;

5. secondaryevel cachemissratelies in therangeof 4% to 22% with a costof 100 CPU cyclesfor each
miss; and

6. TLB misses are insignificant for a message-passing program due to fine-grained datdiatistrib

Thesequantitatve resultscanbe usedto parameterizea simulationmodel of an applicationprocesshat

executed on an Origin2000.
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Figure 9. Histograms and pdfsdr (a) LU, (b) FT, (c) CG, and (d) MG benchmarks executed orofir

processors of an Origin2000.
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4.2 SP-2

An IBM SP-2is composedf RS/6000-59@orkstationgalsoknown as,wide nodes)xonnectedhrougha
high speedswitchto work asa distributedmemorymulticomputersystem EachRS/6000nodeis basedn
aPOWER2multi-chip processowith 66.7MHz clock, 256KBytesof datacache fwo integer computation
units, andtwo floating point computationunits. Eachcacheline is 256 byteswide. A key featureof RS/
6000 wide nodeis that the main memoryto cachebandwidthis sameas PONER2 cacheto processor
bandwidth which is equalto four 64-bitswordsperclock cycle. This featureallows a nodeto run closeto
peak(250MFLOPS)performanceate.Nodesareconnectedy anomega network, whichis a hierarcly of
cross-baswitchesThis switch cantransferdatabetweerSP-2nodesat a lateng of 1 microsecondind40
MBytes/sec bidirectional bandwidth. Considering software overhead, the latenyy becomes 45
microsecondandbandwidthabout34 MBytes/secondMessagesaretransferredisingbufferedwormhole

routing.

Like MIPS R10000, POWVER?2 architectureof an RS/6000node also supportshardware countersto
measureseseral processoractvities, suchas numberof cachemisses, TLB misses,and floating point
instructions. We use an independentlydeveloped data collection tool for SP-2, called Hardware
PerformanceMonitor (HPM) to gatherthe above statistics.Additionally, we use our instrumentation
library to collecttracedatafrom NPBsexecutedon SP-2usinga native implementatiorof MPI message-
passinglibrary. The HPM doesnot directly provide the numberof total memory accessesluring an
execution.Therefore we calculatethis valuein anindirect(anapproximatefashion.We shallassumehat
the numberof memoryaccesseareat leastequalto the numberof floating point operationsThis factis
substantiatetdy the statisticsreportedfor an Origin2000nodein Table3. In otherwords,we areassuming
thattheratio of memoryaccesses the numberof floating point operationgs anarchitecturéendependent
characteristiof a programandholdsfor otherprocessor®f interestto this study for identical program
inputsandcode.We recognizeheapproximatenatureof this assumptiorbut we have to useit to determine

cache and TLB miss rates and compare in the absence of total number of memory access count.
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4.2.1 Ovrall Statistics

Table5 providesthe overall statisticsof computationrandcommunicatiorphaseobtainedthroughtracing
of NPBs.Unlike instrumentatiorfor Origin2000executions timestampsre obtainedthroughMPI timing
function. This requireda changein our custominstrumentatioribrary for executionon SP-2while the
instrumentedcode is samethat was used on Origin2000. Therefore,the number of tracesfor each
benchmarlarealsothe same Thesetiming statisticsreflectthe executionof entireprogramsncludingthe
initial setupand final printing of results phasesin addition to the execution of code that is usedas
benchmarkA comparisorwith the samestatisticsobtainedby executingNPBson Origin2000that were

reported in @ble 2 indicates the consistgraf two results.

Table 5. Statisticsof communicationand computation phasesof NPBson SP-2obtained by custom

instrumentation.
Inter -arri val time of Length of Length of computation
Benchmarks | communication phases | communication phases phases
Mean Min Max Mean Min Max Mean Min Max
(sec) | (msec)| (sec) (sec) | (msec)| (sec) (sec) | (msec)| (sec)
BT 0.15 0.05 3.69 0.004 0.028 0.07 0.15 0.022 3.69
SP 0.06 0.12 1.15 0.003 0.03 0.07 0.06 0.04 1.08
LU 0.01 0.06 1.42 0.0003 | 0.04 0.09 0.01 0.02 1.36
FT 4.35 0.45 15.79 1.23 0.18 12.54 3.12 0.20 14.64
CG 0.01 0.42 1.97 0.002 0.09 0.004 0.01 0.17 1.97
MG 0.04 0.05 42.81 0.01 0.02 6.69 0.03 0.02 42.81

4.2.2 Memory Rerformance

Memorysubsystenof a nodeof distributed-memonyparallelsystems notascomplicatedasthatof anode
on a DSM systembecauseachecoherencgroblemdoesnot occur An RS/6000supportsa simple and
efficient local memoryhierarcly anda fastnetwork to improve remotememoryaccessethroughexplicit
message-passinghe costof a cachemissfor a 66 MHz PONER2is atleast8 cyclesandthatof a TLB
missis atleast28 cycles.Thesummarizedesultsof HPM provide the overall executiontime, total number

of floating point operations, and number of cache and TLB misses.

Table 6 presentghe cacheand TLB miss statisticsfor the NPBs executedon SP-2. Thesestatisticsare

obtainedby startingHPM just before programexecutionand stoppingit immediatelyafter the execution
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finishes At thatpoint,asummaryof CPUandmemoryrelatedstatisticsareobtainedrom HPM. Costsfor
datacacheand TLB missesis calculateddirectly from the summarystatisticsby using 8 cyclesand 28
cyclescostsfor cacheand TLB missesfespectiely. However, cacheand TLB missratesare calculated
basedn the assumptiorthatthe numberof memoryaccesses equalto thetotal numberof floating point

operations.

Table 6. Cache and TLB misse®f NPBs on SP-2 with 66 MHz PGER2-based RS/6000 nodes
obtained through HPM.

Data cache TLB
MFLOPS Miss rate Miss rate
Benchmarks per node (%) Cost (%) (%) Cost (%)
BT 64.75 1.48 11.60 0.10 2.62
SP 42.10 1.97 10.05 0.27 4.81
LU 59.88 0.95 6.92 0.0002 0.56
FT 39.08 1.05 4.99 0.08 1.27
CG 21.42 2.78 7.23 0.20 1.81
MG 7.02 2.97 2.52 0.12 0.35

A comparisorof cachemisscostsfor an SP-2nodewith thatof anOrigin2000node(seeTable4) indicates
thatan SP-2nodeexhibits superiorcacheperformanceThe maximumcachemisscostis never higherthan
12% of total executiontime for an SP-2 node comparedto a maximum of about 60% cost for an
Origin2000node. POWER?2 and R10000cachearchitecturehave major differences PONER2 supports
256KBytescachewith 256 byteswide cachelines. An R10000supports32 KBytes primary datacache
with 128 byteswide cachelines and a secondarycacheof 4 MBytes with 256 byteswide cachelines.
Apparently thelargercacheandblock sizesof SP-2nodesarefavorablefor thememoryboundCFD solver
workloads. Origin2000 nodes support smaller block size for primary cachereducethe false sharing
problemdueto globally sharedaddresspaceln addition,R10000processohasaraw speecf 195MHz,
which makesthe costof a primary cachemisseffectively lesserthanthe costof cachemissof a PONER2
processarConsequentlyasshavn in Tablel1, the executiontimesof NPBson two platformsdo not shav

ary consistent dferences xcept for BT
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4.2.3 Characterization of Emporal Process Behaior

Figurel0 presentdistogramof threemetricsof interestfor BT andSPbenchmark&asedn executionon

four SP-2nodes.Samplesof thesemetrics are basedon tracesobtainedfrom eachnode. Thereis no

differencen the overall shapeof thesehistogramsomparedo thoseobtainedby executionon Origin2000
(seeFigure8). Largestnumberof inter-arrival timesof communicatiorphaseslengthsof communication
phasesandlengthsof computatiorphasesresmall. Thusan exponentialpdf canappropriatelyrepresent
thesetemporalcharacteristicin this casealso.The obviousdifferences the parameterfor the exponential
pdfs becausanean(and minimum and maximum)valuesfor the threemetricsdiffer from thoseobtained

from Origin2000 gecution.

x  Weibul o Lognormal
+ Normal o Exponential

Relative frequency of occurrences

Relative frequency of occurrences
Relative frequency of occurrences

Length of comm. phases (usec) Length of computation phases (psec)

(@) BT

Relative frequency of occurrences

Relative frequency of occurrences
Relative frequency of occurrences

Inter-arrival time of comm. phases (usec) Length of comm. phases (usec) Length of computation phases (lsec)

(b) SP

Figure 10. Histograms and pdfsdr (a) BT and (b) SP benchmarks executed owfir nodes of SP-2.

Figurellrepresentthe histogramsandpdfsfor four kernelbenchmarksbtainedoy executionon four SP-

2 nodesMostof theoccurrencesf themetricsareclusterecaroundsmallvaluesexceptfor FT dueto very
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small numberof communicatiornphasesThesetemporalcharacteristicare again comparablawith those
obtainedfrom Origin2000 execution with differencesin parametersThesedifferencesare due to the

architecture as well as communication subsystemsmptatforms.

As in caseof Origin2000,we quantitatvely summarizehe resultsof workloadstudyon SP-2asfollowing

obsenations:

1. CFD applicationsbasedon PDE solvers exhibit alternatingcomputationand communicationphases
over time, which canbe representedby exponentialdistribution with appropriateparametergor each
metric;

2. number of floating point operations per second per node range from 7 MFLOPS to 65 MFLOPS;
3. cache miss ratalis in the range of 1% to 3% with a cost of 8 CRdes for each miss;

4. TLB misses and their costs areaaginsignificant.

Cache performanceof an SP-2 node is superior from that on Origin2000 as PONER2 processor
considerablyreducesthe numberof missesdueto cachecapacity For a long-runningCFD application,
reducednumberof cachemissescan make a significantdifferencein its performanceThis is one of the

reasons of including memory performance as a part of otkl@ad characterizationfeft.

4.3 Cluster of PCs

In recentyear the performanceof personalcomputergPCs)hascaughtup with the high-endgraphical
workstations Due to economy-of-scaleRCsbasedon state-of-the-arCISC processorganhave superior
price-performanceatio comparedto mary workstations.This is one of the primary reasonsfor their
popularity in a traditional Unix-based workstation market. As clusters of high-end workstation
architecturesvere ervisionedto provide performancecomparabldo supercomputerat fraction of price,

clusters of high-end PCs can further reduce the cost of such a system.

In this subsectionwe presentmeasurement-basedorkload study on our in-houseclusterof PCsusing
NPBs. This prototypesystemconsistsof 30 Intel PentiumPro nodesrunning Linux andinter-connected
througha Myrinet aswell asa fastEthernetnetworks. The raw speedof eachprocessors 200 MHz with
two levelsof cache Thefirst level is 8 KBytesandsecondevel is 512 KBytes.Eachnodehas128 MBytes

of mainmemory Messageassings providedby MPICH implementatiorof MPI library. We usePortland
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Figure 11. Histograms and pdfsdr (a) LU, (b) FT, (c) CG, and (d) MG benchmarks executed orofir

nodes of SP-2.
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Group’s Fortran77 compiler for Linux to compile and link the NPBs.

4.3.1 Overall Statistics

Table7 providesthe overall statisticsof computationrandcommunicatiorphaseobtainedthroughtracing
of NPBs. The instrumentatioriibrary aswell asthe instrumenteccodeis samethat was usedon SP-2.
Thereforethetimestamp®f eventsof interestareagain obtainedoy MPI functions.Thesetiming statistics
reflectthe executionof entire programsincluding the initial setupandfinal printing of resultsphasesn

additionto the executionof codethatis usedasbenchmarkA comparisorof the similar statisticsobtained
from Orgin2000 and SP-2 nodesindicatesthat lengthsof samecommunicationphaseggenerallytakes
longer on PCs. Software overheadfor communicationis always a limiting factor for communication
performanceof a distributed computingsystem.The problemaggrerateswhen the systemis developed

based on unoptimized netvk interface layers of a non-commercial and unsupported operating system.

Table 7. Statistics of communication and computation phases of NPBs on a cluster of PCs.

Inter -arri val time of Length of Length of computation

Benchmarks | communication phases | communication phases phases

Mean Min Max Mean Min Max Mean Min Max

(sec) | (msec)| (sec) (sec) | (msec)| (sec) (sec) | (msec)| (sec)
BT 0.44 0.08 4.96 0.03 0.03 0.17 0.42 0.05 4.94
SP 0.18 0.19 1.68 0.03 0.03 0.22 0.15 0.06 1.65
LU 0.02 0.21 1.38 0.001 0.04 0.25 0.02 0.08 1.28
FT 38.72 30.9 165.18 | 14.45 0.40 61.56 24.27 0.50 165.17
CG 0.04 0.59 16.06 0.01 0.17 0.08 0.03 0.33 16.06
MG 0.18 0.08 160.25 | 0.004 0.02 0.07 0.17 0.05 160.20

4.3.2 Memory Rerformance

PentiumPro also pravides on-chip hardware countersto collect processctevel measurementsie usea
publicly availabletool, calledperfmon to obtainthesemeasurementt thetime of writing this paperwe
are installing a Linux patchto allow perfmonto monitor the CPU and memory statisticsfrom each
PentimumPro processonf selectechodes.We expectthatthe testingof this monitoringtool will take a
few moreweeksbeforewe canobtainreliableresourcaisaganformationfrom thistool. We shallmeasure

the MFLOPS rations, L1 and L2 cache misses and their costs for each NPB at that time.
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4.3.3 Characterization of Ppcess Behaor

Figurel2 presenthistogramf threetemporalmetricsfor BT andSPbenchmarkgxecutedon four nodes
of PC cluster Thesecharacteristicsnatch approximatelyto thoseof Origin2000and SP-2 executions.
Largestnumberof occurrencesre closeto the small valuesof the metricswith a larger spreadof values
comparedo Origin2000and SP-2obsenations.Additionally, lengthsof communicatiorphasesrelarger
for thesecasesSuchcommunicatiorcharacteristicare expecteddueto larger overheadf an operating

system that is not particularly tuned foyapecific parallel or distrided system.
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Figure 12. Histograms and pdfs for (a) BT and (b) SPbenchmarksexecutedon four nodesof a cluster
of Pentium Pro based PCs.

Figurel3representthe histogramsandpdfsof temporaimetricsfor four kernelbenchmarkst.U, FT, CG,
andMG. Theseresultsare consistentith the temporalcharacteristicef BT and SR Histogramsof three
metrics closely follow the exponentialdistribution. Again, the lengthsof time spentin communication

phases are significantly tggr compared to those on Origin2000 and SRe2wions.
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Temporal characteristics of NPBs are quantitdyi summarize as folleing obserations:

1. CFD solversexhibit alternatingcomputatiormandcommunicatiorphase®vertime, which canberepre-
sented by gponential distribtion with appropriate parameters for each metric; and

2. communication latencies are significantly higher due to untuned operating systearesoftw

This concludesour study of CFD applicationsbasedon PDE solver workloads on three platforms.
Dependingon the systemarchitecturesand operatingsystemsoftware, the performanceof memoryand
communicatiorsystemsshawv significantdifferenceslin orderto usethis characterizatiofior performance
modeling and evaluation, we need to accountfor these architecture-and operating system-based
differencego accuratelymodela particularsystem.Coarsegrain temporalcharacteristico®f CFD solver

workloads are identical across these platform witfeiht parameters.

5 Putting Workload Characterization to Work

Workloadcharacterizatiof PDE solver basedCFD applicationis applicableto a numberof performance
evaluation scenariosas detailedin Table 8. Majority of theseperformancestudieshave one common
thread: they emphasizeon the ability to analyze performanceat the entire systemlevel rather than
individual applicationsor system componentslevel. We are primarily using CFD solver workload
characterizationto: (1) identify application performancetuning methodologiesbased on resource
utilization profiles;and(2) evaluatethe performancenf heterogeneousietacomputingervironments.We

present a briefyerview of these performance studies in the fwilog subsections.

5.1 Rerformance Tuning

Measurement-basetorkloadstudyof CFD solversprovidedinsightinto the systemresourcebehaior of
theseapplicationsOnequalitative resultof analysispresentedn Section4 is the memory-boundehaior
of theseapplicationswhich aregenerallycompute-intensie. If theseapplicationgesultin efficient useof

memory subsystem, performance can significantly ingro

In this subsectionye presenbur experienceof performanceéuning of sequentiaimplementatiorof NAS
benchmarkBT on Origin2000.About 97% of the executiontime duringthis executionis CPUtime, which

alsoincludesmemoryaccesgime. Additional measurement®vealthatprimary andsecondarylatacache
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Table 8. Scenarios of applying CFD sobr workload characterization.

Performance
evaluation scenario Explanation
Application Performance of individual applications on a particular HPC platform are better
performance tuning undestoodwhenwe knowthe characteristicsof a larger classof similar applicationson
based onesouce that systemWorkload characterizationwasdirectly usefulfor undesstandingperformance
utilization profiles bottleneks in gneral and memory performance bottlekedn particular
Cache performance We are in the processof designinga cache performancepredictiontool that is basedon
prediction genericworkload characterizationand systemmodel. The main objectiveof this tool is to

allow the user to study che performance of basic bksin the code

Performance studies of| We are using workload characterizationto analyzethe performanceand throughputof
metacomputingystems | metacomputing systems undefatént opeating conditions.

Effect of hetesgeneous | Oftenhigh performancecomputingserves are usedto executea diverse mix of workloads.
workloads on QoS Workload daracterization is useful to study QoS offsggstems.

Study of job dweduling | Productionhigh performancesystentfor scientificworkload are usually usedin a batd
policies mode Workload characterization can be used quantitatively analyze various job
scheduling policies.

Design and ealuation | Workload characterizationcan be usedto fully analyzeand tune virtual shaed memory
of virtual shaed systems to deliver high performance when actually implemented.
memory systems

Design of data Monitoring systemsan be designedo havelow overheadto the systemand application
collection systems usingworkloadcharacterizationghatrepreseninteractionsamongsoftwae and hardware
resouces of a system.

missesare responsiblefor about 70% of the CPU time during this execution. In order to tune cache
performanceyve first identify the sectionsof codethat accountfor largestproportionof executiontime.

Subsequentlywe focus on this code and modify it to imypeacache utilization.

Figure 14(a) shavs a profile of primary datacachemisseswith respecto varioussubroutineof the BT
benchmarkThe graphrepresentshe numberof datacachemisseswithin a subroutineasa percentag®f
total numberof cachemissesduring the execution.Most of the datacachemissesareclusteredn a small
numberof subroutinesit implies that thesepartsof the code have relatively large numberof memory

accesses compared to others, and are maly li&k incur @erhead due to cache misses.

We optimizedthe memoryaccesseby modifying someloop nestsin conput e_r hs subroutineFigure
14(b) shaws the profile aftertuning onesubroutinghatwasresponsibldor largestnumberof primarydata
cachemissesTheimportantthing to notein Figure 14(b)is thatthe relative memoryaccessverheadof
the mostexpensve subroutinehasconsiderablyeducedThis tuningresultsin about15%improvementin

overall execution time of BT

This procesf identifying a bottleneckresourceandmodifying the codeto tunethe usageof thatresource
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Figure 14. Pofile of data cache misse®f BT (a) before and (b) after cache pexdrmance tuning.

can be appliedto other applicationsaswell. In this scenarioworkload characterizatiorwas helpful to
provide us an a priori knowledge about possible bottleneckresourcewithout resortingto aggressie

measurements of actual application.

5.2 Modeling and Ewaluation of a Metacomputing System

As illustrated by Figure 15, a metacomputingsystemtypically consistsof a set of high performance
computingsites,datacollectioninstrumentsandlarge databaseat geographicallyseparatesitesconnected
througha high bandwidthand low lateny wide-areanetwork. Other termsusedfor describingsucha
distributedsystemincludeInformationPower Grid, National Technology Grid or ComputationalGrid due
to similarities betweena ubiquitouscomputingervironmentandan electric power grid. The goal of such
systemsis to make the computingresourceswidely available to usersregardlessof their geographical
location.In addition,usersshouldbeableto focusontheirapplicationdomaingratherthandealingwith the
subtleties of porting and optimizing their codes to different high performance systems. See
[8,11,18,23,25,26for detailsabouta numberof projectsaddressinglesignand use of metacomputing

systems.

Metacomputingsystemsare currently at planning and prototypical stages Modeling and evaluation of
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Figure 15. A typical metacomputing system.

thesesystemsatthis stages necessaryo ensurehatthe productionsystemswill beableto meetQuality of
Service(QoS)requirement®f specificapplications Although QoSis s genericproblem,we focuson this
problem in the context of resourcemanagementand schedulingin a heterogeneougrvironment.
Czajkowski etal. identify five resourcananagemernissueghatarespecificto metacomputingystems(1)
site autonomy requirements;(2) heterogeneougocal resourceschedulingapproachesand tools; (3)
possibility of managingheterogeneousypes of workloads; (4) co-allocationof resourcesfor certain

applicationsand(5) adaptve controlor resource$o matchdynamicallyvarying applicationrequirements

and resourcevailability.

Our modeling effort focuseson two objectves: (1) quantitatve comparisonof different resource
schedulingandmanagemenpolicies;and(2) impactof specificresourceschedulingpolicieson domain-
specificQoSmetric. Figure 16 illustratesa queuingnetwork modelto represena metacomputingystem
with resourcananagementomponentsSystemis representethy four typesof resourcescomputingand
databasesener resourcesdistributed instruments;one or more resourcemanagers;and a wide area
network thatconnectsall theresourcesTheseresourcearesharedamongmultiple clientsthatoccupy the
resourcesnteractizely or in a batchmode.Component®f this modellabeledasHPC systemmodelsare

parametrizedusing workload study presentedn this paperto representhe executionof a CFD solver
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workload. For aninteractie job, the QoS metricsare latenciesfor a transactionand numberof missed
deadlinesA smallervalueof bothof thesemetricsis desirable For a batchjob, the QoSmetricis waiting
time in abatchqueueandmeasuredloating point operationgersecondA smallerwaiting time indicates
thatthe choiceof anHPC systemby resourcananageto scheduldhe job is basedonits currentload. On
the otherhand,selectionof a systembasedon its load may not resultin high performanceneasuredsa
ratio of usefulfloating point operationsduring the executiontime. A high value of this ratio is desirable.
An optimal choiceof a computingresourcecould be a compromisebetweerwaiting time and numberof

floating point operations aclvied on that system.

Feedback of computation results to client and interactions with resource manager

r— - - — — — — — — — — hl
| Distributed computing and database resources |
| Local Model for |
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Figure 16. A queuing netwrk model for a metacomputing system with esouice management.

Our modelingbasedavaluationefforts of metacomputingesourcananagementystemsontinuesWe are

using a C++SIM basedsimulatorto model different componentsof the model and then hierarchically
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integrate them for QoS basedperformancestudy under different operating conditions [3]. We are
conductinga workload study of the local resourceschedulingcomponentscalled Portable Batch System
(PBS[13]) in termsof job waiting time as function of numberof nodesrequirementexecutiontime
requirement,and time of the day We shall use thesesystemload characteristicso improve resource
schedulingpolicies.We alsointendto modela broadspectrumof resourcananagemenpoliciesfoundin
existing tools and testbedsncluding, Condor[22], CODINE [10], GUSTO [6], Legion [11], and Load
Leveler[16] in additionto the PBS.Detailedquantitatve evaluationof QoS metricsbasedon the models
for theseresourcemanagementsystemss usefulfor the software ervironmentdevelopersfor the future

metacomputing systems.

6 Conclusions

In this paperwe presenteénoutline of our CFD solver workloadcharacterizatioeffort andthe scenarios
whereit is beingapplied.We alsopresentedietailedworkload characterizationfrom 6 NPBson 3 HPC
systemsof interest.We outlined the use of this characterizatiorio evaluatevarious“what-if’ scenarios
regarding the designof a metacomputingsystem.Basedon measurementfrom an example, we also

illustrate the use of erkload characterization to identify performance bottlenecks in a program.

Workload studies indicate that the temporal characteristicsare similar across different platforms.
Differencesn architectureandoperatingsystemsaverealsoelaboratedy the measurements-basstiidies.
Origin2000requiesa high cacheutilization for delivering closeto the peakperformancewhich is not the
casefor an SP-2. Communicationoverheadis significantly higher for message-passingn a Linux PC
comparedo Origin2000and SP-2.This workload study quantitatvely determinedthesedifferencesfor

NPBs.

Useof workloadcharacterizatioto designandevaluateHPC systemdasbeenlimited dueto the difficulty
in collectingruntimeinformationwith minimumintrusionto the programsHowever, with the availability
of on-chip measuremensupporton state-of-the-arfprocessorsijt is possibleto collect system-lgel

informationwith minimum overhead1]. Our workloadcharacterizatiorffort is an examplewherethese
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measurements enableadrious performance studies.
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